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1. Comparison with Naive Cross-Scale Non-
Local (CS-NL) Attention

In the non-local structure, features are summed and
weighted by corresponding spatial attention. Formally, in-
scale non-local attention is
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where red and blue are the same features representation.
Naive cross-scale non-local attention can be straightfor-
wardly evolved as

exp( XWY )

Uexp 4,59 Lu,v

where red and blue are still the same but changed to Y =
X |, that are the down-scaled features by by scaling fac-
tor s. The naive cross-scale attention is build upon the
correlation between features in different scales but sum-
marises down-scaled features. The down-scaling operation
will eliminate high-frequency details and lead performance
regression in super-resolution tasks.

The proposed cross-scale non-local attention summaries
corresponding features in target scale without down-scaling
operation, and can be formalized as
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where red and blue are in different scales but one-to-one
corresponded spatially. In this way, the proposed cross-
scale attention can keep high-resolution information in fea-
ture maps, utilize the original self-exemplar hints and bene-
fits super-resolution performance.

Experiments in Table 1 shows that the naive cross-scale
attention is negligible better than in-scale one, and the pro-
posed cross-scale attention significantly outperforms other
approaches.

Proposed Naive In-scale
Cross-scale Cross-scale
PSNR 33.74 33.65 33.62

Table 1. Comparison with Naive Cross-Scale Non-Local (CS-NL)
Attention on Set14 [9] (x2).

2. More Qualitative Comparison

In Fig. 1-2, we provide more visual results to compare
with other state-of-the-art methods. One can see that our
approach reconstructed better image details, demonstrating
the superiority of the proposed CSNLN.
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Figure 1. Visual comparison for 4x SR on Urban100 dataset.
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Figure 2. Visual comparison for 4x SR on Mangal09 dataset.

ence on computer vision and pattern recognition workshops, resolution via deep recursive residual network. In Proceed-
pages 136-144, 2017. 2, 3 ings of the IEEE conference on computer vision and pattern

[8] Ying Tai, Jian Yang, and Xiaoming Liu. Image super- recognition, pages 3147-3153, 2017. 3



(9]

(10]

(1]

Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Interna-
tional conference on curves and surfaces, pages 711-730.
Springer, 2010. 1

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
286-301, 2018. 2

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2472-2481, 2018. 2, 3



