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1. Comparison with Naı̈ve Cross-Scale Non-
Local (CS-NL) Attention

In the non-local structure, features are summed and
weighted by corresponding spatial attention. Formally, in-
scale non-local attention is

Zi,j =
∑
g,h

exp(φ(Xi,j , Xg,h))∑
u,v exp(φ(Xi,j , Xu,v))

ψ(Xg,h) (1)

where red and blue are the same features representation.
Naı̈ve cross-scale non-local attention can be straightfor-

wardly evolved as

Zi,j =
∑
g,h

exp(φ(Xi,j , Yg,h))∑
u,v exp(φ(Xi,j , Yu,v))

ψ(Yg,h) (2)

where red and blue are still the same but changed to Y =
X ↓s, that are the down-scaled features by by scaling fac-
tor s. The naı̈ve cross-scale attention is build upon the
correlation between features in different scales but sum-
marises down-scaled features. The down-scaling operation
will eliminate high-frequency details and lead performance
regression in super-resolution tasks.

The proposed cross-scale non-local attention summaries
corresponding features in target scale without down-scaling
operation, and can be formalized as

Zs×s
si,sj =

∑
g,h

expφ(Xi,j , Yg,h)∑
u,v expφ(Xi,j , Yu,v)

ψ(Xs×s
sg,sh), (3)

where red and blue are in different scales but one-to-one
corresponded spatially. In this way, the proposed cross-
scale attention can keep high-resolution information in fea-
ture maps, utilize the original self-exemplar hints and bene-
fits super-resolution performance.

Experiments in Table 1 shows that the naı̈ve cross-scale
attention is negligible better than in-scale one, and the pro-
posed cross-scale attention significantly outperforms other
approaches.

Proposed
Cross-scale

Naı̈ve
Cross-scale

In-scale

PSNR 33.74 33.65 33.62
Table 1. Comparison with Naı̈ve Cross-Scale Non-Local (CS-NL)
Attention on Set14 [9] (×2).

2. More Qualitative Comparison

In Fig. 1-2, we provide more visual results to compare
with other state-of-the-art methods. One can see that our
approach reconstructed better image details, demonstrating
the superiority of the proposed CSNLN.
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Figure 1. Visual comparison for 4× SR on Urban100 dataset.
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Figure 2. Visual comparison for 4× SR on Manga109 dataset.
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