Lux Post Facto: Learning Portrait Performance Relighting with
Conditional Video Diffusion and a Hybrid Dataset
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Figure 1. Lux Post Facto ofters portrait relighting as a simple post-production process. Users can edit the lighting of portrait images (first
row) and videos (second row) with high fidelity using any HDR map. Our method is temporally stable and highly photorealistic.

Abstract

Video portrait relighting remains challenging because
the results need to be both photorealistic and temporally
stable. This typically requires a strong model design that
can capture complex facial reflections as well as intensive
training on a high-quality paired video dataset, such as
dynamic one-light-at-a-time (OLAT). In this work, we in-
troduce Lux Post Facto, a novel portrait video relighting
method that produces both photorealistic and temporally
consistent lighting effects. From the model side, we design
a new conditional video diffusion model built upon state-of-
the-art pre-trained video diffusion model, alongside a new
lighting injection mechanism to enable precise control. This
way we leverage strong spatial and temporal generative
capability to generate plausible solutions to the ill-posed

relighting problem. Our technique uses a hybrid dataset
consisting of static expression OLAT data and in-the-wild
portrait performance videos to jointly learn relighting and
temporal modeling. This avoids the need to acquire paired
video data in different lighting conditions. Our extensive
experiments show that our model produces state-of-the-art
results both in terms of photorealism and temporal consis-
tency.

1. Introduction

Lighting is a crucial element in visual storytelling, shaping
the scene, adding depth, and creating emotional impact. Be-
cause of this, lighting receives considerable attention in the
filming process, marked by professional expertise, expen-



sive equipment, and coordinated teamwork — resources be-
yond the reach of novice users. In this work, we endeavor
to design a video relighting method to empower everyday
content creators to create creative and compelling lighting
in portrait videos as a simple post-production process.

Video relighting requires an accurate simulation of light
transport through complex materials across both time and
space. Image-based relighting [11] allows a portrait to be
relit when the subject has been recorded from a dense array
of lighting directions, such as a one-light-at-a-time (OLAT)
reflectance field. Using a high-speed camera and a synchro-
nized LED stage, Wenger et al. [71] record OLATSs at movie
frame rates, allowing for cinematic relighting of a facial per-
formance. However, the technique relies on complex equip-
ment and cannot be generalized to new subjects.

More recent works have attempted to transfer facial re-
flectance information from one or more subjects to an-
other, for example by tracking an OLAT quotient image
[41] onto a new flat-lit performance. This has been gener-
alized to a deep learning context, where OLAT data from
a set of training subjects is used to relight a novel sub-
ject [25, 30, 40, 61, 79]. However, these models can have
issues with temporal consistency, a lack of photorealism, or
require difficult-to-obtain OLAT video data, or some com-
bination of the three.

In this work, we propose Lux Post Facto, a new video
relighting model for relighting arbitrary portrait videos re-
alistically and with temporal consistency. We formulate
video relighting as a conditional generation process leverag-
ing a state-of-the-art video diffusion model [3], fine-tuned
on a hybrid dataset with new lighting injection and training
strategies.

While video diffusion models [3, 74] have the power
to generate temporally consistent videos with high-quality
lighting from text guidance, they lack the ability to achieve
fine-grain lighting control. While we would like to specify
the lighting as a high dynamic range (HDR) lighting envi-
ronment, conventional image conditioning methods [75, 85]
like CLIP [47], struggle to represent the HDR pixel values
and spatial details in HDR maps. And methods based on
pixel-aligned control maps [27, 80] require explicit proxy
geometry, prone to estimation errors.

We solve this problem by encoding the original HDR
map as a set of “lighting embeddings”, where each embed-
ding represents a single directional light source. Collec-
tively, the embeddings produce a complete lighting envi-
ronment representation. We pass this representation to the
diffusion model through cross-attention to achieve precise
lighting control.

Our model is practical to train since it requires only a
limited number of static OLAT image datasets and a larger
set of in-the-wild portrait videos. The static OLAT's provide
relighting supervision for individual frames, and the in-the-

wild videos train the model to produce temporally stable
performances under a wild variety of unknown lighting con-
ditions. Our novel training strategy learns from this combi-
nation of datasets to achieve temporally consistent portrait
video relighting. We show that our method outperforms cur-
rent single-image and video relighting models. To summa-
rize, our technical contributions include:

1. A novel video diffusion model for portrait relighting, ca-
pable of generating high-fidelity lighting effects on arbi-
trary portrait videos with state-of-the-art performance.

2. A novel lighting control module that improves the en-
coding of lighting information and enables precise light-
ing control.

3. A new hybrid dataset and associated training approach
which allows training our video relighting models using
static OLAT images and in-the-wild video data in a uni-
fied framework.

2. Related Work

Portrait relighting has been a key research area for years.
The pioneering light stage work [9] proposes to capture
the reflectance field of human faces using OLAT, com-
posing them to novel lighting using the linearity of light
transport. Ensuing work [2, 11, 17, 36, 37, 71] use time-
multiplexed lighting to capture live-action actors at high
frame rates. Moving subjects are then relit using image-
based or neural rendering [51, 63]. Alternative multi-view
setups (e.g., Wang et al. [68]) have been proposed to cre-
ate relighting models. However, all these methods require
per-subject capture, limiting their generalization.

To bypass the need for light stage data, techniques like
quotient images [41, 56], intrinsic decomposition [, 23, 28,
29, 53, 54], or style transfer [57, 58] have been proposed.
Recently, data-driven methods use models trained on multi-
illumination datasets to generalize. CNN-based methods
have shown their effectiveness on image relighting, achiev-
ing novel lighting effects [25, 40, 43, 76], shadow manipu-
lation [13, 16, 23, 32, 42, 61, 67, 70, 77, 83, 86], and inter-
active lighting editing [34]. GAN-based methods enhance
portrait relighting using ratio images [22], or explicit 3D
representations [35, 39, 48, 62]. While effective for single
images, these methods struggle to maintain temporal con-
sistency when applied to videos.

Given the recent advances in image diffusion models [10,
50], known for their quality and generality, some works ap-
ply them to portrait and scene relighting [19, 21, 27, 44, 46,
78], and related tasks like portrait harmonization [49, 81].
The relighting models [19, 27, 44, 78] fine-tune pre-trained
latent diffusion models [50] on a dataset with lighting an-
notations. The harmonization methods [49, 81] propose
to adjust foreground lighting to match backgrounds. They
both achieve photorealistic results. However, none of these
image-based models are temporally stable.
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Figure 2. Overview and model design of Lux Post Facto. To relight an input video, a delighting model predicts an albedo video (a) which
is then relit by a relighting model (b). Both models share the same architecture (c) based on stable video diffusion [3] (SVD). We condition
the SVD on the input video by concatenating input latents to the Gaussian noise. To support autoregressive prediction for long sequence,
we replace the first 7" frames with previous predictions, indicated with a binary mask concatenated to the input. The output lighting is
controlled by an HDR map, converted to a light embedding fed to the U-Net through cross-attention layers. The VAE that encodes and

decodes the latents is omitted for clarity.

Video-based Relighting. Video relighting focuses on
consistent lighting for dynamic sequences. Recent meth-
ods often trade spatial quality for temporal consistency. For
example, extensions of image relighting models to video,
such as [19, 25], typically apply temporal smoothing to the
relit results, leading to blurry shading and averaged details.
Some other methods assume simplified lighting conditions,
such as diffuse [31], or white and spherical harmonic illu-
mination [6]. NVPR [79], a general face relighting model,
integrates a temporal consistency loss to achieve stable por-
trait relighting under dynamic lighting, but loses some fa-
cial details. Some 3D-based methods [30, 73] leverage the
advanced 3DGS representations [24] for high-quality fa-
cial performance relighting. They require per-subject multi-
view capture for both training and inference. These meth-
ods rely on scarce dynamic OLAT datasets captured with
high-speed cameras. We introduce a hybrid dataset to ad-
dress the scarcity of high-quality paired video datasets.

Video Diffusion Models. Video diffusion models [3, 4,
18, 60] form the foundation of our video relighting model.
These models synthesize realistic and temporally coherent
videos from text input. To improve the generation quality,
some works propose to use diffusion noise prior [8, 14] or
cascading models [20, 66]. To make the model controllable,
recent works condition it on control signals [84] such as hu-
man poses [7, 65], input images [55], or depth maps [12].
To precisely control the lighting of our video diffusion mod-
els, we propose a new light conditioning mechanism.

Preliminary: Our video relighting model is built upon
video diffusion models like Stable Video Diffusion
(SVD) [3]. These models involve a forward pass that pro-
gressively injects Gaussian noise into video sequences and
a reverse process with a denoising U-Net learned to predict
the noise to reconstruct the original videos. The network

is trained by minimizing the mean squared error between
noise predictions and ground truth. To ensure temporal co-
herence, the models incorporate specialized layers like 3D
convolutions and temporal attention, operating in a latent
space via a variational autoencoder (VAE) for efficiency.

3. Method

We present Lux Post Facto, a video relighting method that
can relight in-the-wild portrait videos. Following recent
work on portrait relighting [35, 40], our method is com-
posed of two stages: a video delighting pass and a video
relighting pass. Both stages are shown in Fig. 2.a and 2.b.
First, the delighting model takes a portrait video as input
and predicts a shading-free albedo' video. Then, the relight-
ing model takes the predicted albedo video as input and an
HDR map as lighting condition and generates a relit video
under the target lighting condition. The two models are built
upon the same video diffusion architecture but differ in in-
put and conditioning.

We train both these models on a hybrid dataset stemming
from static OLAT images with precise lighting information
and in-the-wild portrait videos with diverse motions. To
best use this data, we train our model with the auxiliary
task of reference-based appearance copy, improving tempo-
ral consistency.

In Sec. 3.1, we first describe both the relighting and
delighting model design and our long-sequence inference
strategy. Then in Sec. 3.2, we detail our hybrid dataset and
how we adapt them to the auxiliary task of appearance copy.

3.1. Model Design

At the core of Lux Post Facto is the idea to leverage the
strong generative priors from pretrained video diffusion

IFollowing [34, 35, 40], we refer to flat-lit images as albedo approxi-
mation.



models, adapting them for the relighting task. We thus
build our relighting method upon a state-of-the-art open-
source video diffusion model, i.e., SVD [3], modified to
become a conditional generator. To achieve our relighting
goal, we propose a two-stage approach following existing
works [35, 40], which first delights the input video to gen-
erate its delit albedo video and then relights it. Since both
modules share the same backbone, we first introduce the re-
lighting model, then describe how the delighting model dif-
fers. Note that both models are trained independently and
do not share their weights.

3.1.1. Relighting Model

The model architecture of the relighting module is shown in
Fig. 2.c. From a delit albedo video clip - predicted by the
delighting module - and potentially previous relit frames,
the relighting model predicts a relit video. To adapt the text-
guided SVD model to our relighting task, we provide both
spatio-temporal conditioning and lighting control.

Spatio-Temporal Conditioning. To support spatio-
temporal conditioning on the input frames, we follow
previous works [5, 15, 49] and add additional input chan-
nels to the first convolution layer of the denoising U-Net.
This modification conditions the denoising process on the
input video.

For temporal consistency over long sequences during
testing, we adopt an iterative mechanism, detailed in
Sec. 3.1.3. As such, the model must distinguish the orig-
inal input frames (i.e., albedo) from previous predictions
(i.e., relit frames). To achieve this, we introduce additional
binary masks as input to the denoising U-Net. These bi-
nary masks M, indicate the previously generated frames,
i.e., they have all 1’s for the frames from the previous win-
dow and 0’s otherwise. In summary, the input to the denois-
ing U-Net is a concatenation of input latents, binary masks,
and noise latents over time.

Lighting Control. To control the target lighting at test
time, we condition the denoising U-Net on an HDR map.
Compared to other representations for lighting control, such
as background images [49, 81] or text prompts [81] recently
used in conditional diffusion models, HDR maps capture a
broader range of lighting scenarios and offer more precise
control.

To provide the HDR map to the denoising U-Net, we
first tokenize it. Each directional “light token” is computed
by summing the intensities over a small local area in the
HDR map. We then embed these “light tokens” into high di-
mensional “light embeddings” using an multilayer percep-
tron (MLP), and concatenate them with positional encod-
ings representing each light’s average direction. The em-
beddings are then concatenated to form the light embedding
Le. L. is transmitted to the denoising U-Net through cross-
attention layers similar to text embeddings. This condition-

ing design is key to achieving high-quality, controllable re-
lighting results and enabling precise control as shown by
our experiments.

3.1.2. Delighting Model

The delighting diffusion model uses the same architecture
as the relighting model. It differs only in its input and con-
ditioning signals. Instead of taking a delit video and pre-
vious relit frames, it takes the original video and previous
delit frames as input. The delighting model does not use
lighting control, since its target output is always a flat-lit
albedo video.

3.1.3. Long Sequence Prediction

Video diffusion models can only predict video frames with
a fixed length (e.g. L). To support long-video inference, we
adopt an iterative scheme following recent works [15, 64].
We generate subsequent frames based on previous predic-
tions. Specifically, for our diffusion models, trained with
frame length L = 30, we replace the first 7" = 4 frames in
the input with previous predictions and update their masks,
letting the model predict the subsequent 7'— L = 26 frames.
During training, we randomly sample T' € [0, 4] and replace
the input frames with ground truth.

3.2. Learning Relighting on a Hybrid Dataset

Training both delighting and relighting models would typi-
cally require a paired video dataset consisting of lit videos
V; and their corresponding albedo videos V,, as well as
HDR map conditions E;. However, collecting such a video
dataset is difficult and expensive in practice.

Instead, we use a more accessible hybrid video dataset
created from static OLAT images and in-the-wild videos.
We first introduce how we obtain training video datasets
from both data sources and then present our training
scheme, designed to best use the information from each.

3.2.1. Hybrid Video Data Creation

We build our hybrid dataset with two types of videos:
videos with diverse illuminations but little motions (de-
noted as D), synthesized from static OLAT images, and
videos with diverse motions but unknown lighting (denoted
as D,,), obtained from in-the-wild videos. A visualiza-
tion of the raw source data and its corresponding processed
training data is shown in Fig. 3.

Lighting-Rich Dataset D;. D, contains triples of paired
video and HDR maps {V},V,, E;}. To construct this
dataset, we start from static OLAT images paired with
matched flat-lit images. We capture a group of subjects with
diverse static expressions and poses from multiple views.
We use image-based lighting [9, 51] to obtain various re-
lit versions of each expression/pose from their OLATs. We
generate the lit images using various HDR maps E;. For
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Figure 3. Hybrid video dataset creation. We add synthetic cam-
era motion to static OLAT images, and apply the image delighting
model to in-the-wild videos, creating our hybrid training data.

their corresponding albedo images, we directly use the flat-
lit images [34, 35, 40]. Finally, to lift the data to the video
domain we simulate camera motions (e.g., zooming, pan-
ning) on the images. This lighting-rich dataset could be
used to learn portrait relighting by itself. However, the mo-
tions being limited to 2D camera movements, we demon-
strate in our experiments that D; is not enough to generalize
to real in-the-wild motions.

Motion-Rich Dataset D,,,. For D,,, we use an in-the-
wild video dataset [72] containing 15,000 high-quality talk-
ing heads with diverse motion patterns. As shown in Fig. 3,
to create paired training samples, we first train an image
delighting model on D; and then use this model, we pre-
dict pseudo albedos for each video, frame by frame. These
albedo videos are thus not temporarily consistent. De-
tails about the image delighting model can be found in the
supplement. This way, we have not only pseudo-ground
truth for the delighting task but also pseudo-input with
real ground truth for the relighting task, similar to [27].
Thus, we obtain a dataset of in-the-wild video pairs D,,, =
{V}, V. }, but without corresponding HDR map E;.

3.2.2. Training with Hybrid Data

With a fully-labelled dataset of triples {V},V,, E;}, we
could supervise both delighting and relighting models to
learn the delighting mapping D : (V) — V, and relight-
ing mapping Ry : (V4| Le) — V,, respectively. Where £,
is the embedding of the HDR map E;.

However, given our hybrid dataset, we face two issues.
First, we lack the HDR map FE; to condition the relight-
ing mapping Ryg; on the motion-rich dataset D,,,. Second,
for the delighting mapping D, D,,, only provides pseudo
albedo, which is not temporally consistent enough to be
used as supervision. We thus propose to train both models
on the auxiliary task of reference-based appearance copy.
This lets the networks learn from both datasets, combining
accurate lighting control and improved temporal stability.
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Figure 4. Training with hybrid data. To train both the relighting
and delighting models, we use the hybrid dataset. We train the
models on two tasks simultaneously: HDR-based condition (or
no condition) on the OLAT data (i.e. lighting-rich dataset D;) and
reference-based appearance copy on both datasets (i.e. motion-rich
dataset D,,, and lighting-rich dataset D;).

Reference-based Appearance Copy. To leverage the
motion-rich dataset D,,,, we propose to train our network
on an auxiliary task. We choose the task of reference-based
appearance copy [57, 59]. It presents similarities with re-
lighting whilst not requiring known HDR maps. Instead of
using an HDR map to control lighting, for this task, we use
a reference frame Ff taken from a lit video V). The net-
work is then tasked to “copy” the appearance from the lit
reference frame F} to the frames of the corresponding delit
clip V,. F} is randomly selected from V; and may not over-
lap with the training subsequences. In practice, to condition
the model on the reference frame Ff, we encode it as an
embedding L.y using a CNN encoder: L.y = &£ (Ff)
thus leading to a reference-based appearance copy map-
ping Rier : (Vu|Lyey) — Vi. To support both HDR- and
reference-based lighting control, we adapt the light encoder
for different inputs using masks. More details are included
in the supplement. Next, we introduce how we train both
video relighting and delighting using this auxiliary task.

Video Relighting. Our relighting model can now lever-
age both datasets by training HDR-based relighting and
reference-based appearance copy simultaneously, as shown
in Fig. 4 (Video Relighting). Formally, R = Ryg U Ryes :
(ValLe V Lyey) — V.

For videos from the motion-rich dataset D,,,, we only
use the reference-based conditioning, while we randomly
condition on either or both for videos from the lighting-
rich dataset D;. Training with the motion-rich dataset D,,,
through reference-based appearance copying effectively im-
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Figure 5. Comparison against video relighting methods on in-the-wild portrait videos. For each sequence we show three input frames,
with the target HDR map and reference image rendered with the same HDR map and OLAT data, both shown as inset. Our method
produces more faithful lighting effects and is robust to facial expression change (first column) and head motion (last two columns).

proves temporal consistency.

Video Delighting. For the relighting mapping, the mo-
tion dataset D,,, provides temporally-inconsistent pseudo-
albedo as input, but the relighting model is robust to it
since the target is always a temporally consistent real video.
To train the delighting model D, the mapping is inverted.
Training with pseudo-albedo from D,, as targets leads to
poor temporal consistency, which can affect the following
relighting stage. We find that jointly training the delight-
ing model to delight the lighting-rich dataset D;, while per-
forming appearance copy on the motion-rich dataset D,,,
similar to the relighting model, yields satisfactory results,
as the model can still learn temporal consistency through
appearance copy. This process is shown as Video Delight-
ing in Fig. 4. We hypothesize that the main benefit from the
appearance copy task is to enforce temporal consistency.

4. Data and Implementation Details

Data Preparation. The hybrid dataset is generated from
two sources: static OLAT captures and in-the-wild videos

from VFHQ [72], which contains 15,000 high-quality talk-
ing head videos. Our light stage is similar to [40, 61] with
110 programmable LED lights and 36 frontal cameras. We
collect data from 67 participants, photographed with diverse
head poses, facial expressions and accessories, resulting in
a total of 71,280 OLAT sequences. We reserve 7 subjects
with varied appearances and genders for evaluation. Fol-
lowing recent works [34, 35, 40], we capture flat-lit images
with all lights turned on, approximating diffuse albedo.

To obtain a high-quality dataset with diverse illumina-
tions, we collect 769 HDR maps from PolyHeaven [45],
which are randomly paired with OLAT sequences to create
the training dataset, using image-based relighting [9, 51].
600 HDR maps are randomly selected for training and the
rest are used for testing. Our final static OLAT dataset con-
tains about 4M rendered images.

Training Details. We initialize both the relighting and de-
lighting models with pre-trained SVD [3]. A training batch
consists of 8 video clips at resolution of 512x768 pixels
sampled from our hybrid dataset. We train each model, with



a two-stage training schedule. In the first stage, we warm up
the model by training on short sequences of 2 frames and
optimize all model weights for 200K steps. This speeds-up
convergence and the model is quickly tuned to the relighting
task. In the second stage, we train with longer sequences of
30 frames over 50K iterations, only optimizing the temporal
layers of our models. We optimize both models towards v-
prediction objectives [52] using the AdamW [33] optimizer
with a learning rate of le-5. More data and training details
can be found in the supplement.

5. Experiments

We demonstrate the high-quality video relighting capabil-
ity of Lux Post Facto through extensive evaluations. More
video comparison results can be found in the supplement.

Evaluation Metrics. We follow previous work [34, 35]
and use PSNR and SSIM [69] to evaluate fidelity and report
LPIPS [82] and NIQE [38] scores for perceptual quality.
All metrics are computed on the foreground subject, using
pre-computed masks from [26].

5.1. Comparison with State-of-the-Art Methods
5.1.1. Video Relighting

We compare Lux Post Facto with the state-of-the-art video
relighting methods NVPR [79] and SwitchLight [25] on
in-the-wild portrait videos. NVPR is a video relighting
model trained on a large dynamic OLAT dataset. Switch-
Light [25], originally proposes an image relighting model.
Recently, the same authors deploy an improved video re-
lighting model commercially, and we compare to this im-
proved version. Since we have no access to ground-truth re-
lit videos, we present a qualitative comparison to both meth-
ods in Fig. 5. Our method produces, more realistic high-
lights and skin tones, finer details and better shadows. In
our supplement, we present more video comparisons, high-
lighting that our method is also more temporally stable.

5.1.2. Image Relighting

Besides video relighting, Lux Post Facto can also be used
on single image portraits, treating images as short static
videos. This allows to quantitatively evaluate our model’s
performance. To do so, we compare Lux Post Facto with
the state-of-the-art Total Relighting (TR) [40] method and
the SwitchLight image model [25]. We conduct qualitative
evaluations on in-the-wild images and both qualitative and
quantitative evaluations on our test set, composed of left-out
OLATs. The quantitative results are presented in Tab. 1.
While our method is trained with the added temporal
consistency constraint, it outperforms both SoOTA methods
on all metrics by a fair margin. In Fig. 6 & 7, we present
qualitative results. In Fig. 6, for which we use subjects from
our test set, we observe our method produces results closer

Input TR

Figure 6. Comparisons to image-based relighting methods on
our test set. The first column shows the input and target HDR
map. Subsequent columns show results from different methods
and ground truth targets. Our results are more faithful and realistic.

SwitchLight Ours Target

Table 1. Quantitative evaluations against image-based relighting
methods. Our method outperforms others in all evaluation metrics.

Methods [ LPIPS| NIQE] [ PSNRT _ SSIM{f
TR [40] 0.1794 6458 | 2244 0.7793
SwitchLight [25] | 02129  7.166 | 19.87  0.7481
Ours 0.1158  5.653 | 24.62 0.8278

to the ground truth. In Fig. 7, we use in-the-wild portraits
and show one OLAT captured subject relit by the target
lighting as reference. Our method respects skin tones better
and produces more plausible highlights and shadows.

5.2. Additional Evaluations

We provide additional evaluations for Lux Post Facto to fur-
ther demonstrate its capabilities.

Consistent Albedo Prediction. Benefiting from our hy-
brid training strategy, Lux Post Facto predicts temporally
consistent albedo channel as shown in Fig. 8 (a). The re-
sults show that our model removes the existing shading and
preserves the facial details.

Lighting Control. Lux Post Facto enables precise light-
ing control thanks to our lighting injection mechanism. We
demonstrate its high controllability by relighting portraits
using directional light sources. As shown in Fig. 8 (b),
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Figure 7. Comparisons to image-based relighting methods
on in-the-wild portrait images. We present results similarly to
Fig. 6, replacing the ground truth with an OLAT computed image
as reference. Again, our method has better results with good tone

preservation and details.

Table 2. Ablation study on lighting control module.

Methods [ LPIPS| NIQE] [ PSNRf SSIM?t
Clip Image Enc. [47] | 0.1747  5.831 20.73  0.7808
Ours 0.1158  5.653 | 24.62  0.8278

our results showcase complex light transport effects such
as specular reflections and cast shadows coherent with the
rotating light sources. In Fig. 8 (c), we make the directional
light source more diffuse and show that our method renders
realistic soft shadows.

5.3. Ablation Studies

We conduct ablation studies on two core designs: lighting
control module and hybrid dataset training strategy. We
first show that our lighting control mechanism is signifi-
cantly better than using the commonly used CLIP image
encoder [47] for image conditioning (Tab. 2). Then, in
Fig. 9 we show that with our hybrid datatset training strat-
egy our model produces sharper and more photorealistic re-
sults compared to training only on the lighting-rich data D;.
Without using it (i.e. training solely on OLAT dataset with
simulated camera motions), the model cannot handle sub-
ject’s movement well and tends to produce blurry results
(Fig. 9). More details and qualitative results can be found
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Figure 8. Albedo and directionally lit relighting results. Our
method can predict (a) temporally consistent albedo, and (b) en-
ables precise lighting control. Diffusing the light source effec-
tively leads to softer shadows (c).
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Figure 9. Ablation study on hybrid dataset training. Without
hybrid training on the motion-rich in-the-wild videos, the model
produces blurry results.

in the supplement.

6. Conclusion

We presented Lux Post Facto, a video relighting method that
brings realistic and temporally consistent relighting to stan-
dard portrait videos in post-production. By treating video
relighting as an HDR map conditioned generation process,
and fine-tuning a state-of-the-art video diffusion model, Lux
Post Facto achieves generalized fine-grained lighting con-
trol of portrait videos. Lux Post Facto only requires a set of
static OLAT images and a larger pool of in-the-wild videos
for training. This hybrid dataset effectively provides relight-
ing supervision for individual frames while fostering tem-
poral stability across frames. Discussion of limitations and
future work can be found in the supplement.
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